Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.364
Filter
1.
BMC Microbiol ; 24(1): 131, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643098

ABSTRACT

BACKGROUND: Exposure to extreme cold or heat temperature is one leading cause of weather-associated mortality and morbidity in animals. Emerging studies demonstrate that the microbiota residing in guts act as an integral factor required to modulate host tolerance to cold or heat exposure, but common and unique patterns of animal-temperature associations between cold and heat have not been simultaneously examined. Therefore, we attempted to investigate the roles of gut microbiota in modulating tolerance to cold or heat exposure in mice. RESULTS: The results showed that both cold and heat acutely change the body temperature of mice, but mice efficiently maintain their body temperature at conditions of chronic extreme temperatures. Mice adapt to extreme temperatures by adjusting body weight gain, food intake and energy harvest. Fascinatingly, 16 S rRNA sequencing shows that extreme temperatures result in a differential shift in the gut microbiota. Moreover, transplantation of the extreme-temperature microbiota is sufficient to enhance host tolerance to cold and heat, respectively. Metagenomic sequencing shows that the microbiota assists their hosts in resisting extreme temperatures through regulating the host insulin pathway. CONCLUSIONS: Our findings highlight that the microbiota is a key factor orchestrating the overall energy homeostasis under extreme temperatures, providing an insight into the interaction and coevolution of hosts and gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Hot Temperature , Animals , Mice , Temperature , Gastrointestinal Microbiome/physiology , Cold Temperature , Adaptation, Physiological/physiology
2.
FASEB J ; 38(8): e23615, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38651657

ABSTRACT

Athletes increasingly engage in repeated sprint training consisting in repeated short all-out efforts interspersed by short recoveries. When performed in hypoxia (RSH), it may lead to greater training effects than in normoxia (RSN); however, the underlying molecular mechanisms remain unclear. This study aimed at elucidating the effects of RSH on skeletal muscle metabolic adaptations as compared to RSN. Sixteen healthy young men performed nine repeated sprint training sessions in either normoxia (FIO2 = 0.209, RSN, n = 7) or normobaric hypoxia (FIO2 = 0.136, RSH, n = 9). Before and after the training period, exercise performance was assessed by using repeated sprint ability (RSA) and Wingate tests. Vastus lateralis muscle biopsies were performed to investigate muscle metabolic adaptations using proteomics combined with western blot analysis. Similar improvements were observed in RSA and Wingate tests in both RSN and RSH groups. At the muscle level, RSN and RSH reduced oxidative phosphorylation protein content but triggered an increase in mitochondrial biogenesis proteins. Proteomics showed an increase in several S100A family proteins in the RSH group, among which S100A13 most strongly. We confirmed a significant increase in S100A13 protein by western blot in RSH, which was associated with increased Akt phosphorylation and its downstream targets regulating protein synthesis. Altogether our data indicate that RSH may activate an S100A/Akt pathway to trigger specific adaptations as compared to RSN.


Subject(s)
Adaptation, Physiological , Hypoxia , Muscle, Skeletal , S100 Proteins , Signal Transduction , Humans , Male , Hypoxia/metabolism , Muscle, Skeletal/metabolism , Adaptation, Physiological/physiology , Signal Transduction/physiology , Young Adult , S100 Proteins/metabolism , Adult , Proto-Oncogene Proteins c-akt/metabolism , Exercise/physiology
3.
J Comput Neurosci ; 52(2): 145-164, 2024 May.
Article in English | MEDLINE | ID: mdl-38607466

ABSTRACT

Traveling waves of neural activity emerge in cortical networks both spontaneously and in response to stimuli. The spatiotemporal structure of waves can indicate the information they encode and the physiological processes that sustain them. Here, we investigate the stimulus-response relationships of traveling waves emerging in adaptive neural fields as a model of visual motion processing. Neural field equations model the activity of cortical tissue as a continuum excitable medium, and adaptive processes provide negative feedback, generating localized activity patterns. Synaptic connectivity in our model is described by an integral kernel that weakens dynamically due to activity-dependent synaptic depression, leading to marginally stable traveling fronts (with attenuated backs) or pulses of a fixed speed. Our analysis quantifies how weak stimuli shift the relative position of these waves over time, characterized by a wave response function we obtain perturbatively. Persistent and continuously visible stimuli model moving visual objects. Intermittent flashes that hop across visual space can produce the experience of smooth apparent visual motion. Entrainment of waves to both kinds of moving stimuli are well characterized by our theory and numerical simulations, providing a mechanistic description of the perception of visual motion.


Subject(s)
Models, Neurological , Motion Perception , Photic Stimulation , Motion Perception/physiology , Humans , Neurons/physiology , Animals , Computer Simulation , Visual Cortex/physiology , Adaptation, Physiological/physiology
4.
PLoS Comput Biol ; 20(4): e1011951, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598603

ABSTRACT

Implicit adaptation has been regarded as a rigid process that automatically operates in response to movement errors to keep the sensorimotor system precisely calibrated. This hypothesis has been challenged by recent evidence suggesting flexibility in this learning process. One compelling line of evidence comes from work suggesting that this form of learning is context-dependent, with the rate of learning modulated by error history. Specifically, learning was attenuated in the presence of perturbations exhibiting high variance compared to when the perturbation is fixed. However, these findings are confounded by the fact that the adaptation system corrects for errors of different magnitudes in a non-linear manner, with the adaptive response increasing in a proportional manner to small errors and saturating to large errors. Through simulations, we show that this non-linear motor correction function is sufficient to explain the effect of perturbation variance without referring to an experience-dependent change in error sensitivity. Moreover, by controlling the distribution of errors experienced during training, we provide empirical evidence showing that there is no measurable effect of perturbation variance on implicit adaptation. As such, we argue that the evidence to date remains consistent with the rigidity assumption.


Subject(s)
Adaptation, Physiological , Humans , Adaptation, Physiological/physiology , Computer Simulation , Learning/physiology , Psychomotor Performance/physiology , Computational Biology , Movement/physiology , Male , Adult , Models, Neurological
5.
J Neurosci ; 44(17)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38527808

ABSTRACT

Throughout life, the cerebellum plays a central role in the coordination and optimization of movements, using cellular plasticity to adapt a range of behaviors. Whether these plasticity processes establish a fixed setpoint during development, or continuously adjust behaviors throughout life, is currently unclear. Here, by spatiotemporally manipulating the activity of protein phosphatase 2B (PP2B), an enzyme critical for cerebellar plasticity in male and female mice, we examined the consequences of disrupted plasticity on the performance and adaptation of the vestibulo-ocular reflex (VOR). We find that, in contrast to Purkinje cell (PC)-specific deletion starting early postnatally, acute pharmacological as well as adult-onset genetic deletion of PP2B affects all forms of VOR adaptation but not the level of VOR itself. Next, we show that PC-specific genetic deletion of PP2B in juvenile mice leads to a progressive loss of the protein PP2B and a concurrent change in the VOR, in addition to the loss of adaptive abilities. Finally, re-expressing PP2B in adult mice that lack PP2B expression from early development rescues VOR adaptation but does not affect the performance of the reflex. Together, our results indicate that chronic or acute, genetic, or pharmacological block of PP2B disrupts the adaptation of the VOR. In contrast, only the absence of plasticity during cerebellar development affects the setpoint of VOR, an effect that cannot be corrected after maturation of the cerebellum. These findings suggest that PP2B-dependent cerebellar plasticity is required during a specific period to achieve the correct setpoint of the VOR.


Subject(s)
Cerebellum , Neuronal Plasticity , Reflex, Vestibulo-Ocular , Animals , Reflex, Vestibulo-Ocular/physiology , Neuronal Plasticity/physiology , Mice , Cerebellum/growth & development , Cerebellum/physiology , Male , Female , Purkinje Cells/physiology , Adaptation, Physiological/physiology , Mice, Inbred C57BL , Mice, Knockout
6.
Sci Adv ; 10(6): eadj5661, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335297

ABSTRACT

Hypoxia-inducible factor pathway genes are linked to adaptation in both human and nonhuman highland species. EPAS1, a notable target of hypoxia adaptation, is associated with relatively lower hemoglobin concentration in Tibetans. We provide evidence for an association between an adaptive EPAS1 variant (rs570553380) and the same phenotype of relatively low hematocrit in Andean highlanders. This Andean-specific missense variant is present at a modest frequency in Andeans and absent in other human populations and vertebrate species except the coelacanth. CRISPR-base-edited human cells with this variant exhibit shifts in hypoxia-regulated gene expression, while metabolomic analyses reveal both genotype and phenotype associations and validation in a lowland population. Although this genocopy of relatively lower hematocrit in Andean highlanders parallels well-replicated findings in Tibetans, it likely involves distinct pathway responses based on a protein-coding versus noncoding variants, respectively. These findings illuminate how unique variants at EPAS1 contribute to the same phenotype in Tibetans and a subset of Andean highlanders despite distinct evolutionary trajectories.


Subject(s)
Adaptation, Physiological , Altitude , Hematocrit , South American People , Humans , Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , East Asian People , Hypoxia/genetics , Hypoxia/metabolism , Mutation, Missense/genetics , South American People/genetics
7.
Am J Physiol Heart Circ Physiol ; 326(5): H1065-H1079, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38391314

ABSTRACT

Athlete's heart is generally regarded as a physiological adaptation to regular training, with specific morphological and functional alterations in the cardiovascular system. Development of the noninvasive imaging techniques over the past several years enabled better assessment of cardiac remodeling in athletes, which may eventually mimic certain pathological conditions with the potential for sudden cardiac death, or disease progression. The current literature provides a compelling overview of the available methods that target the interrelation of prolonged exercise with cardiac structure and function. However, this data stems from scientific studies that included mostly male athletes. Despite the growing participation of females in competitive sport meetings, little is known about the long-term cardiac effects of repetitive training in this population. There are several factors-biochemical, physiological and psychological, that determine sex-dependent cardiac response. Herein, the aim of this review was to compare cardiac adaptation to endurance exercise in male and female athletes with the use of electrocardiographic, echocardiographic, and biochemical examination, to determine the sex-specific phenotypes, and to improve the healthcare providers' awareness of cardiac remodeling in athletes. Finally, we discuss the possible exercise-induced alternations that should arouse suspicion of pathology and be further evaluated.


Subject(s)
Heart , Ventricular Remodeling , Humans , Male , Female , Heart/diagnostic imaging , Heart/physiology , Electrocardiography , Echocardiography , Athletes , Adaptation, Physiological/physiology
8.
Proc Biol Sci ; 291(2016): 20232700, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38320612

ABSTRACT

Mounting evidence suggests that ectotherms are already living close to their upper physiological thermal limits. Phenotypic plasticity has been proposed to reduce the impact of climate change in the short-term providing time for adaptation, but the tolerance-plasticity trade-off hypothesis predicts organisms with higher tolerance have lower plasticity. Empirical evidence is mixed, which may be driven by methodological issues such as statistical artefacts, nonlinear reaction norms, threshold shifts or selection. Here, we examine whether threshold shifts (organisms with higher tolerance require stronger treatments to induce maximum plastic responses) influence tolerance-plasticity trade-offs in hardening capacity for desiccation tolerance and critical thermal maximum (CTMAX) across Drosophila species with varying distributions/sensitivity to desiccation/heat stress. We found evidence for threshold shifts in both traits; species with higher heat/desiccation tolerance required longer hardening treatments to induce maximum hardening responses. Species with higher heat tolerance also showed reductions in hardening capacity at higher developmental acclimation temperatures. Trade-off patterns differed depending on the hardening treatment used and the developmental temperature flies were exposed to. Based on these findings, studies that do not consider threshold shifts, or that estimate plasticity under a narrow set of environments, will have a limited ability to assess trade-off patterns and differences in plasticity across species/populations more broadly.


Subject(s)
Adaptation, Physiological , Thermotolerance , Animals , Temperature , Adaptation, Physiological/physiology , Hot Temperature , Drosophila/physiology , Acclimatization/physiology
9.
Rev. int. med. cienc. act. fis. deporte ; 24(94): 448-464, jan. 2024. tab
Article in English | IBECS | ID: ibc-230966

ABSTRACT

Objective:The research aims to determine the impact of high-Altitude training on athletic performance in Andean athletes. Using the distinct physiological adaptations that people who live in high-altitude areas have evolved, this study examines the effects of high-altitude training on the athletic performance of Andean athletes. This study investigates Andean athletes' baseline physiological characteristics (red blood cell count, oxygen saturation, and lung capacity). An organizedhigh-altitude training programaims to evaluate the impact of altitude on strength, cardiovascular endurance, and overall athletic performance. Working with geneticists, the research explores genetic variables that affect Andean athletes' capacity to adjust to training at high altitudes. For measuring, the research used SPSS software and generated results including descriptive statistics, correlation coefficient, the model summary, and chi-square analysis between the independent and dependent. The purpose of the study is to record any negative effects that participants may have experienced as well as any potential benefits and difficulties related to purposeful high-altitude training. The results have the potential to improve training protocols, guide customizedstrategies based on genetic profiles, and advance the conversation on the moral ramifications of exceeding human potential in the sake of sports achievement. The overall result found a positive impact of high-altitude training on athletic performance in Andean athletes. This research aims to further our understanding of the intricate interactions between purposeful training, innate abilities, and athletic performance in demanding settings (AU)


Subject(s)
Humans , Adaptation, Physiological/physiology , Physical Functional Performance , Altitude , Athletes
10.
Sci Adv ; 10(1): eadi7624, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38170771

ABSTRACT

Stimulus-specific adaptation (SSA), the reduction of neural activity to a common stimulus that does not generalize to other, rare stimuli, is an essential property of our brain. Although well characterized in adults, it is still unknown how it develops during adolescence and what neuronal circuits are involved. Using in vivo electrophysiology and optogenetics in the lemniscal pathway of the mouse auditory system, we observed SSA to be stable from postnatal day 20 (P20) in the inferior colliculus, to develop until P30 in the auditory thalamus and even later in the primary auditory cortex (A1). We found this maturation process to be experience-dependent in A1 but not in thalamus and to be related to alterations in deep but not input layers of A1. We also identified corticothalamic projections to be implicated in thalamic SSA development. Together, our results reveal different circuits underlying the sequential SSA maturation and provide a unique perspective to understand predictive coding and surprise across sensory systems.


Subject(s)
Auditory Cortex , Mice , Animals , Auditory Cortex/physiology , Acoustic Stimulation/methods , Adaptation, Physiological/physiology , Thalamus/physiology , Sense Organs
11.
Schizophr Res ; 264: 345-353, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218020

ABSTRACT

An altered use of context and experience to interpret incoming information has been posited to explain schizophrenia symptoms. The visual system can serve as a model system for examining how context and experience guide perception and the neural mechanisms underlying putative alterations. The influence of prior experience on current perception is evident in visual aftereffects, the perception of the "opposite" of a previously viewed stimulus. Aftereffects are associated with neural adaptation and concomitant change in strength of lateral inhibitory connections in visually responsive neurons. In a previous study, we observed stronger aftereffects related to orientation (tilt aftereffects) but not luminance (negative afterimages) in individuals diagnosed with schizophrenia, which we interpreted as potentially suggesting altered cortical (but not subcortical) adaptability and local changes in excitatory-inhibitory interactions. Here, we tested whether stronger tilt aftereffects were specific to individuals with schizophrenia or extended to individuals with bipolar disorder. We measured tilt aftereffects and negative afterimages in 32 individuals with bipolar disorder, and compared aftereffect strength to a previously reported group of 36 individuals with schizophrenia and 22 healthy controls. We observed stronger tilt aftereffects, but not negative afterimages, in individuals with schizophrenia as compared to both controls and individuals with bipolar disorder, who did not differ from each other. These results mitigate concerns that stronger tilt aftereffects in schizophrenia are a consequence of medication or of the psychosocial consequences of a severe mental illness.


Subject(s)
Bipolar Disorder , Schizophrenia , Humans , Schizophrenia/complications , Bipolar Disorder/complications , Neurons/physiology , Adaptation, Physiological/physiology
12.
J Therm Biol ; 119: 103778, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38171068

ABSTRACT

Climate change is creating novel thermal environments via rising temperatures and increased frequency of severe weather events. Short-term phenotypic adjustments, i.e., phenotypic plasticity, may facilitate species persistence during adverse environmental conditions. A plastic response that increases thermal tolerance is heat hardening, which buffers organisms from extreme heat and may enhance short term survival. However, heat hardening responses may incur a cost with concomitant decreases in thermal preference and physiological performance. Thus, phenotypic shifts accompanying a hardening response may be maladaptive in warming climates. Understanding how heat hardening influences other traits associated with fitness and survival will clarify its potential as an adaptive response to altered thermal niches. Here, we studied the effects of heat hardening on boldness behavior in the color polymorphic tree lizard, Urosaurus ornatus. Boldness in lizards influences traits such as territory maintenance, mating success, and survivorship and is repeatable in U. ornatus. We found that when lizards underwent a heat hardening response, boldness expression significantly increased. This trend was driven by males. Bolder individuals also exhibited lower field active body temperatures. This behavioral response to heat hardening may increase resource holding potential and territoriality in stressful environments but may also increase predation risk. This study highlights the need to detail associated phenotypic shifts with stress responses to fully understand their adaptive potential in rapidly changing environments.


Subject(s)
Extreme Heat , Lizards , Humans , Male , Animals , Heat-Shock Response , Temperature , Adaptation, Physiological/physiology , Body Temperature , Lizards/physiology
14.
Exp Physiol ; 109(3): 335-349, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37885125

ABSTRACT

Planet Earth is warming at an unprecedented rate and our future is now assured to be shaped by the consequences of more frequent hot days and extreme heat. Humans will need to adapt both behaviorally and physiologically to thrive in a hotter climate. From a physiological perspective, countless studies have shown that human heat acclimation increases thermoeffector output (i.e., sweating and skin blood flow) and lowers cardiovascular strain (i.e., heart rate) during heat stress. However, the mechanisms mediating these adaptations remain understudied. Furthermore, several possible benefits of heat acclimation for other systems and functions involved in maintaining health and performance during heat stress remain to be elucidated. This review summarizes recent advances in human heat acclimation, with emphasis on recent studies that (1) advanced our understanding of the mechanisms mediating improved thermoeffector output and (2) investigated adaptations that go beyond those classically associated with heat acclimation. We highlight that these studies have contributed to a better understanding of the integrated physiological responses underlying human heat acclimation while leaving key unanswered questions that will need to be addressed in the future.


Subject(s)
Acclimatization , Body Temperature Regulation , Humans , Body Temperature Regulation/physiology , Acclimatization/physiology , Hot Temperature , Adaptation, Physiological/physiology , Sweating
15.
J Neurophysiol ; 131(1): 16-27, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37964728

ABSTRACT

Retinal image slip during head rotation drives motor learning in the rotational vestibulo-ocular reflex (VOR) and forms the basis of gaze-stability exercises that treat vestibular dysfunction. Clinical exercises, however, are unengaging, cannot easily be titrated to the level of impairment, and provide neither direct feedback nor tracking of the patient's adherence, performance, and progress. To address this, we have developed a custom application for VOR training based on an interactive computer game. In this study, we tested the ability of this game to induce VOR learning in individuals with normal vestibular function, and we compared the efficacy of single-step and incremental learning protocols. Eighteen participants played the game twice on different days. All participants tolerated the game and were able to complete both sessions. The game scenario incorporated a series of brief head rotations, similar to active head impulses, that were paired with a dynamic acuity task and with a visual-vestibular mismatch (VVM) intended to increase VOR gain (single-step: 300 successful trials at ×1.5 viewing; incremental: 100 trials each of ×1.13, ×1.33, and ×1.5 viewing). Overall, VOR gain increased by 15 ± 4.7% (mean ± 95% CI, P < 0.001). Gains increased similarly for active and passive head rotations, and, contrary to our hypothesis, there was little effect of the learning strategy. This study shows that an interactive computer game provides robust VOR training and has the potential to deliver effective, engaging, and trackable gaze-stability exercises to patients with a range of vestibular dysfunctions.NEW & NOTEWORTHY This study demonstrates the feasibility and efficacy of a customized computer game to induce motor learning in the high-frequency rotational vestibulo-ocular reflex. It provides a physiological basis for the deployment of this technology to clinical vestibular rehabilitation.


Subject(s)
Reflex, Vestibulo-Ocular , Vestibule, Labyrinth , Humans , Reflex, Vestibulo-Ocular/physiology , Adaptation, Physiological/physiology , Exercise Therapy , Head Movements/physiology
16.
Exp Brain Res ; 242(1): 137-148, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979066

ABSTRACT

Bimanual coordination is an essential feature of the motor system, yet interactions between the limbs during independent control remain poorly understood. Interference between the two hands, or the assimilation of movement characteristics between the two effectors, can be induced by perturbing one arm (e.g., via visuomotor rotation) and then measuring the effects in the contralateral limb. In this study, we sought to further determine the role adaptation plays in bimanual interference using a structural learning paradigm to alter feedback regulation in reaching. We trained healthy participants to counter 60 unique random rotations in right hand visual feedback over 240 reaches. Following this, we assessed feedforward and feedback measures of interference in a bimanual reaching task where the right hand was exposed to a fixed visual feedback rotation while the left hand reached without visual feedback. We found that participants who had been exposed to the structural training task in the right hand showed increased left hand interference during the first 20 trials of the test task. Moreover, interference was greater in feedback, rather than feedforward control parameters. The results further suggest that structural learning enhances bimanual interference via sensory feedback upregulation.


Subject(s)
Learning , Psychomotor Performance , Humans , Psychomotor Performance/physiology , Hand/physiology , Upper Extremity , Movement/physiology , Functional Laterality/physiology , Adaptation, Physiological/physiology
17.
Biomech Model Mechanobiol ; 23(1): 287-304, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37851203

ABSTRACT

The two major aims of the present study were: (i) quantify localised cortical bone adaptation at the surface level using contralateral endpoint imaging data and image analysis techniques, and (ii) investigate whether cortical bone adaptation responses are universal or region specific and dependent on the respective peak load. For this purpose, we re-analyse previously published µ CT data of the mouse tibia loading model that investigated bone adaptation in response to sciatic neurectomy and various peak load magnitudes (F = 0, 2, 4, 6, 8, 10, 12 N). A beam theory-based approach was developed to simulate cortical bone adaptation in different sections of the tibia, using longitudinal strains as the adaptive stimuli. We developed four mechanostat models: universal, surface-based, strain directional-based, and combined surface and strain direction-based. Rates of bone adaptation in these mechanostat models were computed using an optimisation procedure (131,606 total simulations), performed on a single load case (F = 10 N). Subsequently, the models were validated against the remaining six peak loads. Our findings indicate that local bone adaptation responses are quasi-linear and bone region specific. The mechanostat model which accounted for differences in endosteal and periosteal regions and strain directions (i.e. tensile versus compressive) produced the lowest root mean squared error between simulated and experimental data for all loads, with a combined prediction accuracy of 76.6, 55.0 and 80.7% for periosteal, endosteal, and cortical thickness measurements (in the midshaft of the tibia). The largest root mean squared errors were observed in the transitional loads, i.e. F = 2 to 6 N, where inter-animal variability was highest. Finally, while endpoint imaging studies provide great insights into organ level bone adaptation responses, the between animal and loaded versus control limb variability make simulations of local surface-based adaptation responses challenging.


Subject(s)
Adaptation, Physiological , Tibia , Animals , Mice , Tibia/diagnostic imaging , Tibia/physiology , Weight-Bearing/physiology , Adaptation, Physiological/physiology , Mice, Inbred C57BL , Cortical Bone/diagnostic imaging , Disease Models, Animal , Tomography, X-Ray Computed
18.
Neuropsychol Rehabil ; 34(2): 155-180, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36652376

ABSTRACT

In some patients with unilateral spatial neglect, symptoms reflect impaired lateralized spatial attention and representation (perceptual bias) whereas in others the inability to respond to stimuli located in contralesional space (response bias). Here, we investigated whether prismatic adaptation (PA) and visual scanning training (VST) differentially affect perceptual and response bias and whether rehabilitation outcome depends on the type of bias underlying symptoms. Two groups of neglect patients in the subacute phase were evaluated before, immediately after, and two weeks following 10 days of PA (n = 9) or VST (n = 9). Standard neuropsychological tests (i.e., Behavioural Inattentional Test, Diller cancellation test, and Line Bisection test) were administered to assess neglect symptoms, while the Landmark task was used to disentangle perceptual and response biases. Performance on the Landmark task revealed that PA was more effective in improving the perceptual bias, while VST mainly modulated the response bias. Neuropsychological tests performance suggested that VST is better suited to modulate neglect in patients with response bias, while PA may be effective in patients with both types of bias. These findings may offer novel insights into the efficacy of PA and VST in the rehabilitation of perceptual and response biases in patients with neglect.


Subject(s)
Agnosia , Perceptual Disorders , Humans , Perceptual Disorders/rehabilitation , Treatment Outcome , Neuropsychological Tests , Adaptation, Physiological/physiology , Functional Laterality/physiology , Space Perception/physiology
19.
J Therm Biol ; 119: 103763, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38071896

ABSTRACT

Local adaptation and phenotypic plasticity play key roles in mediating organisms' ability to respond to spatiotemporal variation in temperature. These two processes often act together to generate latitudinal or elevational clines in acute temperature tolerance. Phenotypic plasticity is also subject to local adaptation, with the expectation that populations inhabiting more variable environments should exhibit greater phenotypic plasticity of thermal tolerance. Here we examine the potential for local adaptation and developmental plasticity of thermal tolerance in the widespread invasive tunicate Botryllus schlosseri. By comparing five populations across a thermal gradient spanning 4.4° of latitude in the northwest Atlantic, we demonstrate that warmer populations south of the Gulf of Maine exhibit significantly increased (∼0.2 °C) post-larval temperature tolerance relative to the colder populations within it. We also show that B. schlosseri post-larvae possess a high degree of developmental plasticity for this trait, shifting their median temperature of survival (LT50) upwards by as much as 0.18 °C per 1 °C increase in environmental temperature. Lastly, we found that populations vary in their degrees of developmental plasticity, with populations that experience more pronounced short-term temperature variability exhibiting greater developmental plasticity, suggesting the local adaptation of developmental plasticity. By comparing the thermal tolerance of populations across space and through time, we demonstrate how geography and developmental plasticity have shaped thermal tolerance in B. schlosseri. These results help inform our understanding of how species are able to adjust their thermal physiology in new environments, including those encountered during invasion and under increasingly novel climate conditions.


Subject(s)
Urochordata , Animals , Larva , Temperature , Adaptation, Physiological/physiology , Geography
20.
Exerc Sport Sci Rev ; 52(1): 3-12, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38126401

ABSTRACT

Human skeletal muscle cell (HSkMC) models provide the opportunity to examine in vivo training-induced muscle-specific mitochondrial adaptations, additionally allowing for deeper interrogation into the effect of in vitro exercise models on myocellular mitochondrial quality and quantity. As such, this review will compare and contrast the effects of in vivo and in vitro models of exercise on mitochondrial adaptations in HSkMCs.


Subject(s)
Exercise , Muscle, Skeletal , Humans , Muscle, Skeletal/physiology , Exercise/physiology , Mitochondria , Muscle Fibers, Skeletal/physiology , Mitochondria, Muscle/metabolism , Adaptation, Physiological/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...